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The steepening of a normal compression wave into a shock in a homentropic flow
field is understood well through the method of characteristics. In a non-homentropic
flow field, however, shock formation from a compression wave is more complex. The
effects of entropy (or sound speed) gradients on shock formation from a compression
wave are determined using a wave front expansion in Cartesian and in spherical
polar coordinates. The latter problem has application to the intense energy focusing
of sonoluminescence, particularly when applied to a spherically collapsing gas. The
principal result is an analytical criterion for the time and place of shock formation,
for a wave propagating into a field of smoothly varying entropy.

1. Introduction
When a compression wave travels in a gas, it is well known that the disturbance

tends to steepen as a consequence of nonlinearity. If, for example, the pressure at one
end of a long cylinder containing gas is suddenly increased, the resulting compression
wave will steepen until a shock forms. By use of the method of characteristics, it is
possible to analyse such a problem when the compression wave is propagating into
gas that is in a uniform state. In this simple case, the characteristics have a constant
slope, and certain combinations of variables known as the Riemann invariants are
constant along characteristics. These simplifications can be exploited to predict the
time and place of shock formation.

In this paper, we consider the problem of a compression wave launched into a
quiescent or radially collapsing gas where there is a smooth variation in the entropy
ahead of the wave. Variable entropy is equivalent to variable sound speed, or density,
or temperature, etc. Of interest to us is the rate of steepening of a compression wave
in such a non-uniform environment.

This problem has application in the study of sonoluminescence, which is light
emission from a spherically imploding bubble. It is thought that a compression wave
in the gas interior, launched by the imploding surface, is important in concentrating
energy near the bubble centre. How steep the compression wave becomes before
it reflects from the origin is a key to determination of the peak temperatures and
quantity of matter heated to extreme temperatures. In an earlier paper Vuong, Szeri &
Young (1999) we argued that a compression wave can be prevented from steepening
into a sharp shock before it reaches the bubble centre by an adverse gradient in
sound speed. This gradient forms because: (i) the bubble collapse to one millionth
the maximum volume causes enormous compression heating of the contents, and
(ii) rapid heat conduction out of the bubble reduces the temperature near the wall.
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Figure 1. Evolution of an inwardly travelling spherical compression wave in a homentropic field. A
shock forms well before it reaches the origin and increases rapidly in strength after formation. These
results are from numerical solutions of the full nonlinear hyperbolic conservation laws, obtained
using Clawpack (LeVeque 1997).

Hence, in the collapsed state when the compression wave is launched, the bubble
contents are hot in the centre and cool near the wall. The compression wave thus
travels inward into hotter and hotter gas with higher and higher sound speed. The
leading edge of the compression wave outruns the trailing edge and the compression
wave is prevented from steepening into a sharp shock. The consequence is that a large
fraction of the bubble contents is heated over a time scale that compares well with
time scales of sonoluminescence light emission (100 to 300 picoseconds, full width
at half maximum). A theory which does not take into account thermal conduction
(which leads to the adverse gradient in sound speed) yields sharp shocks which heat
very little material to much more extreme temperatures over time scales that are too
short when compared to experiment.

In the present work, we establish the validity of the mechanism just described – that
of the sound speed (or entropy) gradient controlling shock formation. Although the
gradient arises as a consequence of diffusive transport (as we argue in Vuong et al.
1999), the mechanism for controlling shock formation is purely hyperbolic. As an
example of the phenomena with which we are concerned, we show the evolution of a
compression wave in a spherical geometry in figures 1 and 2. The wave is travelling
inward (right to left) and steepening on its way into a shock. One observes that the
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Figure 2. Evolution of the same compression wave as in figure 1 in a non-homentropic collapsing
gas with an adverse sound speed (entropy profile) a0(r) = 4 − 3.5r3 and initial linear velocity field
v0(r) = −2r. Note that shock formation is delayed until very close to the origin, where (neglected)
diffusion terms control the evolution, as explained in § 4.3. The pressure has been rescaled by the
pressure at the centre.

shock forms rapidly in figure 1 – which corresponds to a homentropic field. In figure
2, the shock is weaker and its formation is delayed until very close to the origin. The
factors responsible for the delay in shock formation in figure 2 are (i) the non-uniform
entropy field into which the wave propagates, superposed (ii) on a radially collapsing
flow. We develop an analytical criterion for when and where a shock will form in a
spherically collapsing gas based on the initial conditions of a problem.

2. Nonlinear steepening of plane waves
First we consider for simplicity the case of plane waves. The spherically symmetric

case shares many important features with plane waves. Furthermore, we restrict our
considerations to a calorically perfect ideal gas. We shall review the characteristic
formulation and one-dimensional wave motion before developing the shock formation
criterion that is later illustrated with examples.

2.1. Governing equations

The equations of motion for isentropic flow are as follows. The mass balance is

∂tρ+ u∂xρ = −ρ∂xu; (2.1)
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the balance of linear momentum is

ρ∂tu+ ρu∂xu = −∂xp; (2.2)

the condition for isentropic flow requires

∂ts+ u∂xs = 0. (2.3)

These are supplemented by the equation of state p = ρRT and the expression for the
sound speed a2 = γRT . Here u(x, t) is the gas velocity, p(x, t) is the pressure, ρ(x, t) is
the density, T (x, t) is the temperature, s(x, t) is the entropy, R is the gas constant and
γ is the ratio of specific heats.

2.2. Formulation on characteristics

In the case where the entropy field is uniform, equations (2.1), (2.2), (2.3) can be
conveniently analysed in characteristic coordinates as follows. There are two sets of
characteristics in the (t, x)-plane, denoted C+ and C−; these are the graphs of x+(t)
and x−(t), where

ẋ+ = [u(x, t) + a(x, t)]x=x+(t) , ẋ− = [u(x, t)− a(x, t)]x=x−(t) . (2.4)

The dot denotes a simple time derivative. If we let d+/dt and d−/dt be the time
derivatives along these two families of characteristics, i.e.

d+

dt
≡ ∂t + (u+ a) ∂x,

d−

dt
≡ ∂t + (u− a) ∂x, (2.5)

then (2.1) and (2.2) are equivalent to

d+u

dt
+

1

aρ

d+p

dt
= 0, (2.6)

d−u
dt
− 1

aρ

d−p
dt

= 0. (2.7)

If we exploit the invariance of entropy, and eliminate p in favour of a, then we obtain
the well-known evolution equations for the Riemann invariants Π+ ≡ u+ 2a/(γ − 1)
and Π− ≡ u− 2a/(γ − 1):

d+

dt
Π+ = 0,

d−

dt
Π− = 0. (2.8)

In the case where the entropy field is non-uniform, one obtains instead three
characteristics (Courant & Friedrichs 1948). In addition to C+ and C− we have a
third family of characteristics in the (t, x)-plane, the C0 characteristics; these are the
graphs of x0(t), where

ẋ0 = [u(x, t)]x=x0(t) .

These are, of course, material curves. The Riemann invariants are no longer invariant
in a non-homentropic flow, but instead we have on the two sound waves

d+

dt
Π+ =

(
a2/γR

)
∂xs,

d−

dt
Π− =

(
a2/γR

)
∂xs, (2.9)

and also (2.3): Ds/Dt = 0. In the latter equation, we have made use of D/Dt ≡ ∂t+u∂x.
For completeness, we note that non-uniformity in ρ, a or s does not drive a flow

in a gas at uniform pressure and zero initial velocity. This can be shown from (2.3),
(2.9).
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2.3. Shock formation

We shall study the rate of steepening of the leading edge of a compression wave using
a wave front expansion (Witham 1974). The disadvantage of this approach is that it
neglects the possibility of shock formation in the middle of a wave, but it does shed
light on the influence of the entropy gradient, etc. We note that no spherical wave is
a pure compression or pure rarefaction wave (Landau & Lifshitz 1959); but we shall
make reference to compression or rarefaction wave fronts.

The wave front expansion circumvents the impossible task of obtaining a global
solution in closed form. For convenience we recast the Euler equations in terms of
velocity u, sound speed a and entropy s, which can be obtained immediately from
(2.9):

∂ta+ u∂xa+
γ − 1

2
a∂xu = 0, (2.10)

∂tu+ u∂xu+
2

γ − 1
a∂xa− a2

γR
∂xs = 0. (2.11)

The expansion is based on the fact that for a hyperbolic system a discontinuity
in the derivatives propagates on characteristics. For a wave with compact support
travelling from left to right into a quiescent field, the wave front generally defines
a discontinuity in derivatives of u. This wave front travels with the (fastest) right-
travelling characteristic, which has position x = F(t):

Ḟ(t) = [a(x, t)]x=F(t) (2.12)

because u(x, t) is always zero on the wave front in (2.4).
Although the diffusion terms are extremely small, they do eliminate instantaneously

any C1 discontinuity. However, the basic assumption of the wave front analysis is to
follow such a discontinuity along a characteristic. The detailed structure of a shock
has been much studied; there is superimposed on the solution of the hyperbolic con-
servation laws a thin transition layer within which the action of viscosity and thermal
conduction is not negligible. The details of the viscosity and thermal conductivity are
not so important as the two states on either side of a shock are known independently
of the transport coefficients, and connected through thermodynamic relationships
(Liepmann & Roshko 1957).

Before proceeding we remark that the wavefront expansion applies as well to the
propagation of a discontinuity of order greater than one, e.g. to a wave that is C1 but
has a discontinuity in the second-order derivative. This has been done using singular
surface theory by Shankar & Jain (1980). We refer the reader interested in extensions
of the basic theory to Witham (1974), especially to the material on systems with
more than two independent variables (§ 5.9), wave propagation on shocks (§ 8.5), and
shock-shocks (§ 8.6).

In the neighbourhood of the wave front we define a new relative coordinate
ξ = x − F(t). In the new coordinate ξ = 0 denotes the wave front. Next we expand
the dependent variables about the wave front for ξ < 0, and make use of the fact
that in the quiescent field the sound speed and entropy are known functions a0(x)
and s0(x):

a(ξ, t) = a0(F(t)) + ξa1(t) + 1
2
ξ2a2(t) + · · · ,

u(ξ, t) = ξu1(t) + 1
2
ξ2u2(t) + · · · ,

s(ξ, t) = s0(F(t)) + ξs1(t) + 1
2
ξ2s2(t) + · · · .
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Note that a0(x) and s0(x) have been evaluated at x = F(t). We remark that a0(x) and
s0(x) cannot be specified independently, but are related by virtue of the fact that p is
constant in the quiescent flow:

s′0(x) =
2γRa′0(x)

(γ − 1)a0(x)
. (2.13)

This will be verified later for the expansion to be self-consistent.
The derivatives of the expansions with respect to time and space are required in

what follows. First we write[
∂

∂t

]
x

=

[
∂

∂t

]
ξ

+

[
∂ξ

∂t

]
x

∂

∂ξ
=

∂

∂t
− F ′(t) ∂

∂ξ
=

∂

∂t
− a0(F(t))

∂

∂ξ
,

by use of (2.12). Now we substitute the expansions into (2.10), (2.11), (2.3) and equate
terms of like order in ξ:

ξ0:

a1 − a′0 − γ − 1

2
u1 = 0, (2.14)

u1 +
2

γ − 1
a1 − 1

γR
a0s1 = 0, (2.15)

s′0 − s1 = 0; (2.16)

ξ1:

γ − 1

2
a0u2 − a0a2 = −

(
a′1 +

γ + 1

2
a1u1

)
, (2.17)

−a0u2 +
2

γ − 1
a0a2 = −

(
u′1 + u2

1 +
2

γ − 1
a2

1

)
+

1

γR
(a2

0s2 + 2a0a1s1), (2.18)

s′1 − a0s2 + u1s1 = 0, (2.19)

We proceed to obtain an evolution equation for u1(t) (∂xu at the wave front) to judge
when u1(t)→∞, which is interpreted as shock formation. Note that the coefficient
matrix for u2(t) and a2(t) is singular; this is always true if one expands a hyperbolic
system about any one of its characteristics. (See Witham 1974 for a general proof.)
We can therefore eliminate u2(t) and a2(t) by multiplying (2.17) by 2/(γ − 1) and
adding the result to (2.18):

−
(
u′1 + u2

1 +
2

γ − 1
a2

1

)
+

1

γR
(a2

0s2 + 2a0a1s1)− 2

γ − 1

(
a′1 +

γ + 1

2
a1u1

)
= 0. (2.20)

To get to the final equation for u1(t) we need to eliminate a1, s1, s2. This we do by
use of (2.14), (2.16) and (2.19) in (2.20). After a considerable amount of algebra, we
obtain an evolution equation for the slope of the leading edge of the compression
wave, u1(t), in terms of the known sound field a0(F(t)):

u′1(t) + 1
2
a′0(F(t))u1(t) +

γ + 1

2
u2

1(t) = 0. (2.21)

The initial condition one requires is just the initial slope ∂xu at the wave front.
The nonlinear ODE (2.21) is a Bernoulli equation, which is readily transformed to a



Shock formation and entropy gradients 167

linear ODE in the variable u−1
1 (t). Thereafter an integrating factor yields the solution

1

u1(t)
=

[
1

u1(0)
+
γ + 1

2

∫ t

0

expφ(τ)dτ

]
exp (−φ(t)) (2.22)

where

φ(t) ≡ −1

2

∫ t

0

a′0(F( t̃ ))d̃t.

Together with the solution of (2.12), (2.22) constitutes an analytical solution for the
time and place of shock formation at the leading edge of a plane wave propagating
into a quiescent gas. The gas can be characterized by any variation of sound speed
(or entropy) in the direction of travel.

Before turning to examples, we make a remark about the set of equations (2.14),
(2.15), (2.16) that constitute the zeroth-order balance of ξ in the expansion. First, we
note that the combination of (2.14), (2.15), (2.16) recovers (2.13) to order ξ0.

The physical meaning of (2.14) is a little less apparent, as it involves a subtle link
to the idea of semi-simple waves. It can be shown that equations (2.13), (2.14) and
(2.16) are equivalent to the right-travelling semi-simple wave criterion developed in
the Appendix. Hence, the (right-travelling) semi-simple wave condition is satisfied at
the leading edge of a right-travelling wave propagating into a quiescent field. This
recalls the result (Fundamental Theorem, p. 61) in Courant & Friedrichs (1948) which
states: The flow in a region adjacent to a region of constant state is a simple wave. In
the present language we can say the flow adjacent to a quiescent non-homentropic
region is a semi-simple wave.

A final remark about (2.14) is that the relationship of ∂xu and ∂xa it implies is
only true in general for t > 0. Mathematically equations (2.10), (2.11), (2.3) (or (2.9),
(2.3)) are three equations for three unknowns fields: either (u, a, s) or (Π+, Π−, s). At
t = 0 the three fields can be specified arbitrarily in a wave with compact support.
The relation (2.14) is not necessarily true. However, as soon as the wave starts to
propagate, (2.14) is satisfied exactly at the leading edge. This is analogous to the
case of a simple wave with compact support: in the initial condition u and a can be
specified arbitrarily, but once the wave starts to travel, at the wave front ∂xΠ

− = 0.
Note that if a′0 = 0 in (2.14), this recovers the simple wave case.

2.4. Examples

Now we shall consider a few examples illustrative of the theory, both in homentropic
and non-homentropic fields. A remark about dimensions is in order.

The variables may be regarded as dimensional. Also the variables can be al-
ternatively considered as non-dimensionalized, with the two dimensionless numbers
[U][t]/[L] and [p0][T ]/([ρ0][U][L]) equal to unity. Here [U], [t], [L], [p0] and [ρ0] are
scales for velocity, time, length, pressure and density, respectively. In other words
the velocity scale is chosen to be the length scale divided by the time scale, and the
pressure is the density scale times velocity scale squared.

2.4.1. Shock formation in homentropic flow

In a homentropic flow (a′0(x) ≡ 0), the solution (2.22) simplifies to

u1(t) =
u1(0)

1 + 1
2
(γ + 1)u1(0)t

.
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(a) (b) (c)

Compression Rarefaction

u1
˙

u1

Figure 3. Rate of change of the slope (u̇1) versus the slope (u1) at the leading edge of a right-travelling
compression wave (equation (2.21)); the wave propagates into a domain where the wave speed
(a) remains constant (a′0(x) = 0), (b) increases (a′0(x) = 0.1), and (c) decreases (a′0(x) = −0.1).

From this, we see that u1(t) blows up for any negative u1(0) (i.e. compression wave)
at time

tB =
2

γ + 1

1

|u1(0)| ,
thus recovering the classical result.

2.4.2. Shock formation in non-homentropic flow

Next we consider the simple but illuminating case of a′0 ≡ α constant. This yields
an autonomous system for u1 only. We find that two fixed points for (2.21) arise,
rather than one as in the homentropic case. The fixed points are shown in figure 3.
The solution (2.22) becomes

1

u1(t)
=

(
1

u1(0)
+
γ + 1

α

)
eαt/2 − γ + 1

α
. (2.23)

We consider two separate cases a′0 > 0 and a′0 < 0. When a′0 > 0 the two fixed points
are respectively negative and zero, thus all rarefaction wave fronts relax. The negative
fixed point provides a separatrix for compression wave fronts. In other words, only
strong enough compression waves will steepen into shocks; weaker ones will relax.
Specifically, we find in this case that u1(t) blows up only for u1(0) < −α(γ + 1), i.e.
only for sufficiently steep compression waves. This has a nice physical interpretation:
because the wave travels with local velocity u + a, a shock is harder to form in a
field where a is greater in front than in a field where a is smaller in front. In terms
of entropy, we can say by use of (2.13) that a positive entropy gradient (s′0(x) > 0) is
adverse to the formation of right-running shocks (however, the same entropy gradient
promotes the formation of left-running shocks).

When a′0 < 0 one finds just the opposite: all compression wave fronts steepen into
shocks, but there is an attracting point (i.e. a tendency toward a wave of permanent
form) for all rarefaction waves.

We tested the analysis based on the wave front expansion using numerical methods
to solve the full, nonlinear hyperbolic conservation laws (Clawpack, see LeVeque
1997). In figures 4 and 5 we show the evolution of the wave front steepness in
the cases a0(x) = 1− 0.1x and a0(x) = 0.1 + 0.1x, respectively. The solid curves are
from the analytical solution (2.23) and the dashed curves are the result of numerical
integration of the full nonlinear hyperbolic conservation laws associated with the
field equations (2.10), (2.11), (2.3). The initial waves with compact support satisfy the
semi-simple wave relation a∂xu− ∂xp/ρ = 0 for the wave to be right-travelling only.
This is merely for ease of comparison with the analytical solution. In general an
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Figure 4. Plane wave front evolution when the sound speed decreases linearly in the direction of
travel (a0(x) = 1 − 0.1x). The slope of the leading edge of the wave is plotted against time. All
compression waves (u1 < 0) steepen into shocks; however all rarefaction waves (u1 > 0) tend to the
same leading edge slope. The dashed curves are from the numerical conservation law solution; note
that there is some noise in the discontinuous leading edge slope. The solid curves are analytical
solutions (2.23), developed by wavefront expansion.

arbitrary wave front propagating into a quiescent field adjusts itself to be semi-simple
instantaneously after it takes off.

3. Nonlinear steepening of spherical waves
Now we turn to a case more relevant to sonoluminescence, but we do not yet

include the spherically collapsing base flow. In a spherical geometry we assume
that all the fields concerned are spherically symmetric, so that the problem remains
one-dimensional. However, the focusing properties of the spherical geometry cause
significant changes from the one-dimensional Cartesian case.

3.1. Governing equations

To distinguish the spherical case from the Cartesian case we denote the velocity by v.
The balances of mass, momentum and energy are the same as those of the Cartesian
case, except for an extra source term in the continuity equation:

∂tρ+ v∂rρ+ ρ∂rv = −2ρv

r
, (3.1)

ρ∂tv + ρv∂rv + ∂rp = 0, (3.2)

∂ts+ v∂rs = 0. (3.3)

The source term arises due to the fact that in a spherical geometry the surface area
is a varying function of r. Also there are the equation of state and the expression for
sound speed, which remain the same.
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Figure 5. Plane wave front evolution when the sound speed increases linearly in the direction of
travel (a0(x) = 0.1 + 0.1x). All rarefaction waves (u1 > 0) and sufficiently weak compression waves
(u1 < 0) relax to zero leading edge slope. A strong enough compression wave (u1(0) < −0.04)
becomes a shock. The curves are computed in same way as figure 4.

3.2. Formulation on characteristics

Because the source term in (3.1) does not appear in the derivatives, the hyperbolic
structure carries over from the Cartesian case, except for source terms:

d+v

dt
+

1

ρa

d+p

dt
= −2av

r
,

d−v
dt
− 1

ρa

d−p
dt

=
2av

r
,

where d+/dt = ∂t + (v + a)∂r and d−/dt = ∂t + (v − a)∂r . One should note that the
concept of a simple wave is no longer available even when the flow is homentropic.
The Riemann invariants are no longer invariant along the characteristics even when
s is uniform, owing to the extra source terms arising from geometry, as can be seen
from the evolution equations

d+Π+

dt
=
a2

γR

∂s

∂r
− 2av

r
,

d−Π−

dt
=
a2

γR

∂s

∂r
+

2av

r
.

Here Π+ and Π− are, as before, Π+ = v + 2a/(γ − 1) and Π− = v − 2a/(γ − 1).

3.3. Shock formation

We study a wave propagating inwardly to the centre of the coordinate system, so
that the wave front r = F(t) propagates along a C− characteristic. Again we assume
a quiescent flow in front of the wave. Hence v = 0 at the wave front which travels
inwardly with local sound speed a(F(t)). A typical initial condition is shown in figure
6.

We make use of the same expansion technique used in § 2.3. As before, the goal is
to develop an evolution equation for v1(t), which is ∂rv at the wave front. We shall
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Figure 6. Example initial conditions for an inwardly travelling spherically symmetric compression
wave. The sound speed varies by one order of magnitude, increasing ahead of the wave. Such a
sound speed gradient is representative of those in the interior of sonoluminescence bubbles after
the inertial collapse. The gas is quiescent ahead of the wave.

avoid the lengthy development and give the resulting ODE for v1(t),

v′1 −
(
a′0(F(t))

2
+
a0(F(t))

F(t)

)
v1 +

γ + 1

2
v2

1 = 0. (3.4)

This is again a Bernoulli equation and has a formal solution (2.22) with φ(t) defined
instead as

φ(t) ≡
∫ t

0

(
a′0(F (̃t))

2
+
a0(F (̃t))

F (̃t)

)
d̃t. (3.5)

Here a0(r) is the sound speed of the quiescent field; F(t) is the wave front position
defined as Ḟ(t) = −a0(F(t)); and γ is the ratio of specific heats.

3.4. Examples

Together with the solution for the wave front position, (2.22), (3.5) is an analytical
solution for the slope of the leading edge of a spherical wave propagating into the
centre of an otherwise quiescent region with any sound speed (or entropy) profile. In
what follows we illustrate this result with some examples.

3.4.1. Shock formation in homentropic flow

To analyse the physical meaning of (2.22), (3.5), we first consider the homentropic
case, i.e. when a0(r) ≡ a constant. The wave front position can then be expressed as
F(t) = r0 − at, with r0 denoting the initial position. The solution in explicit form is

1

v1(t)
=

[
1

v1(0)
− (γ + 1)r0

2a
ln
r0 − at
r0

]
r0 − at
r0

, (3.6)

which recovers equation (10) of Greenspan & Nadim (1993). For convenience we
define the time at which the wave front reaches the centre (r = 0) as tc: in the present
case tc = r0/a. Note that it only makes sense to consider the time period 0 < t < tc
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in the spherical case; an account of the wave reflection at the origin is outside the
scope of our analysis.

From (3.6) we see that when t varies from 0 to tc the second term in the brackets
varies from 0 to +∞, which means that if v1(0) is negative, 1/v1(t) always has a zero
somewhere between t = 0 and t = tc. Therefore in a homentropic field an inward-
travelling compression wave (corresponding to v1(0) < 0) always evolves into a shock
wave before it reaches the origin.

3.4.2. Shock formation in non-homentropic flow

We note that although the system of equations (2.22), (3.5) is a solution for the
slope of the leading edge of the wave, it is not practical to discuss the solution in
complete generality. As an example of a specific non-homentropic case, we consider
the simplest possible variation of sound speed with r, which can be motivated also
by the Taylor expansion of a general a(r) about r = 0:

a0(r) = A+ Br2 + · · · , (3.7)

where A and B are constants. Note that A must be positive, and that the first
derivative vanishes as is required in view of the coordinate singularity at the origin.
In this consideration Br2 can be regarded as the leading term in an expansion. Note
that we might choose higher-order polynomials for a better representation of the
sound field, such as we do below in the example of figure 13(b). There, A+Br8 is used
to represent an almost uniform sound field with a sharp decrease in a small region
attached to the bubble wall.

A shock always forms either before or just as the wave reaches the origin. This is
simply because, as r → 0, the expansion (3.7) is dominated by the constant A, and
thus recovers the homentropic case. However, a more detailed study shows that if the
compression wave is weak or the constant B is large and negative enough, the shock
forms only very close to the origin, which is well within the region where diffusion
dominates (see the discussion below in § 4.3).

Hence, although the right kind of entropy (or sound speed) gradient cannot prevent
shock formation in a spherical geometry, it is able to delay the shock formation until
it gets very close to the origin – where diffusion is the dominating phenomenon.

To illustrate we take A = 10 and B = −9. All the inward-travelling waves we
discuss below are compressions except for those in figure 9. Such a sound speed
gradient is similar to that computed in the interior of a sonoluminescence bubble
(Vuong et al. 1999). As in the Cartesian case, the numerical simulation is developed
using Clawpack.

As initial conditions we take v and p as shown in figure 6 in the domain of r > 0.9.
The fields satisfy a∂rv−ρ−1∂rp = 0 in order for the wave to be inward-travelling only,
for convenience.

In figures 7–9, we plot the inverse of the steepness 1/v1(t) parametrically against the
location of the wave front r = F(t). As 1/v1 → ∞, the wave front is an increasingly
weak rarefaction; as 1/v1 → −∞, the wave front is an increasingly weak compression.
A compression wave steepening into a shock approaches 1/v1 = 0 through negative
values (figures 7 and 8); a rarefaction wave steepening into a shock approaches
1/v1 = 0 through positive values (figure 9). If the locus of front location and inverse
steepness reaches 1/v1 = 0 first then there is shock formation at some finite r (three
upper sets of curves in figure 8), while if it reaches r = 0 first there is no shock
formation before the wave front reaches the origin.

In figure 7 we show that relatively weak compression waves, under the influence
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Figure 7. Evolution of the slope of the wave front (v1) of an inward-travelling compression wave
plotted parametrically against the position of the wave fronts. The wave fronts move from right to
left. These weaker compression waves only just steepen into shocks at the centre of the coordinate
system. They are prevented from steepening more quickly by the gradient in entropy (or sound
speed a0(r) = 10 − 9r2) in the quiescent gas into which they travel. The dashed curves are the
numerical result of integrating the conservation laws. The solid curves are the analytical result of
the wavefront expansion.
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Figure 8. When propagating into the same quiescent entropy field as figure 7, stronger compression
waves rapidly steepen into shocks – well before reaching the origin (three upper sets of the curves).
Note that the conservation law solver (dashed curve) cannot resolve a discontinuity at a shock
front; hence the dashed curves can only asymptotically approach 1/v1 = 0.
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Figure 9. An illustration of rarefaction wavefronts propagating inward into a homentropic field,
steepening as they go into infinitesimal shocks at the origin (in the absence of diffusion).

of the steep negative sound speed gradient, first relax somewhat and then steepen on
their way into the origin. The waves evolve into infinitesimal shocks as they reach the
origin.

In figure 8 we show the fate of stronger compression waves. The three upper sets
of solid curves (analytical results) show that shocks form at a finite distance from the
origin. The numerical solver for the conservation laws cannot quite resolve the shock,
of course. In the numerical simulation the shock is captured by a jump of values
on two neighbouring cells, so the simulation curves only asymptotically approach
1/v1(t) = 0.

The case B > 0 is less interesting because then the physical conditions in the
quiescent gas favour shock formation as does the geometric term. Hence shocks form
faster than for the homentropic case. Only for negative B is there a competition
between the natural tendency to shock formation and the adverse sound speed
gradient.

In figure 9 we illustrate the curious result that even inward-travelling rarefaction
wave fronts steepen in the homentropic case in a spherical geometry. This is not
observed in the Cartesian geometry. We note that the extension of this phenomenon
to the formation of a ‘rarefaction shock’ does not occur, for two reasons. First,
rarefaction shocks are susceptible to mechanical instability (Zel’dovich & Raizer
1966). Second, in the inviscid theory infinitesimal rarefaction shocks form just as the
waves reach the bubble centre; this would always be eliminated by diffusion in a
real situation. We present the details concerning the importance of diffusion near
the origin in § 4.3. Notwithstanding those arguments, it is nevertheless true that the
spherical geometry provides a steepening mechanism even for rarefaction waves.

4. Nonlinear steepening of spherical waves in a collapsing gas
In this section, we turn to the analysis of shock formation from a wave propagating

in a spherically collapsing gas. In a collapsing sonoluminescence bubble, the flow on
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which the wave propagates is linear in r rather than quiescent. In the following we
develop the base flow, then we explore the evolution of inwardly travelling waves on
this base flow with the wave front expansion technique.

4.1. Base flow

Our major sources of numerical observations are from Storey & Szeri (2000) and
Chu (1996). In Storey & Szeri (2000), in spite of all the complicated physics in a
collapsing bubble, the velocity field prior to wave formation remains linear to a good
approximation. Following Chu (1996) we assume that the flow inside the bubble is
‘homologous’, i.e. all the ‘thermodynamic variables factorize into products of a time-
dependent factor and another factor depending only on the scaled spatial variable
r/R(t)’ where R(t) is the bubble radius. In what follows, we assume a linear velocity
field and derive the possible constraints on thermodynamic variables. This will later
be used as an exact base flow solution on which is superposed the compression wave
of interest.

We start with v(r, t) = α(t)r. Individual material points evolve according to

r = r0e
β(t).

Here β(t) ≡ ∫ t
0
α(t)dt and r0 is the initial condition. Next we substitute the linear form

of velocity into the continuity equation (3.1). The result can be integrated to obtain

ρ = ρ0(r0)e
−3β(t),

where ρ0(r0) is the density field at time t = 0. Note that this is in Lagrangian form.
In an Eulerian representation

ρ(r, t) = ρ0(re
−β(t))e−3β(t).

Next we solve for the pressure from the energy equation. We rewrite (3.3) in the form

Dp

Dt
− a2 Dρ

Dt
= 0.

We substitute for ρ and v and solve for p to obtain

p(r, t) = p0(r0)e
−3γβ(t),

where p0 is the initial distribution of pressure. Finally we consider the momentum
equation. With expressions for v, ρ and p substituted into (3.2) we obtain

α′(t) + α2(t) = −∂p0/∂r0

r0ρ0(r0)
e(1−3γ)β(t). (4.1)

Note that because α and β are functions of time only, the factor (∂p0/∂r0)/(r0ρ0(r0))
must be a constant for the ansatz to work. This is the desired constraint on the initial
pressure and density fields. The constant turns out to control the growth or decay of
α(t), and consequently the whole base flow.

To satisfy the constraint there are many possibilities. For example, p0 could be
quadratic and ρ0 constant. In this paper, we focus on the case of relevance to
sonoluminescence: uniform pressure p0. See Prosperetti (1991) for a discussion of
when the pressure may be regarded as uniform.

An immediate advantage of uniform p0 is that it automatically satisfies (4.1) without
any constraint on the initial density field (or sound field, or entropy field). The velocity
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gradient α(t) has a simple solution

α(t) =
α0

α0t+ 1
, (4.2)

where α0 is the initial condition for α. Note that if α0 < 0 (the contracting case of
interest), the velocity gradient tends to ∞ as t → −1/α0. This has no effect on the
shock formation analysis, because the compression wave always travels faster than a
material point by the speed of sound and reaches the bubble centre before the base
flow solution (4.2) ceases to make sense, as we shall see in the following analysis.
With (4.2) the exact solution is fully specified in an Eulerian representation:

ve =
α0r

α0t+ 1
, (4.3)

ρe = ρ0

(
r

α0t+ 1

)
1

(α0t+ 1)3
, (4.4)

pe = p0

1

(α0t+ 1)3γ
, (4.5)

ae = a0

(
r

α0t+ 1

)
(α0t+ 1)(3−3γ)/2, (4.6)

where a0 ≡ (γp0/ρ0)
1/2, and p0 now denotes a constant rather than a function of r0. In

addition we have the trajectories r(t) = r0(α0t+ 1) for arbitrary r0. Hence the bubble
wall, which we could ascribe to any material point, evolves as R(t) = R0(α0t + 1).
Together (4.3), (4.4), (4.5) constitute an exact solution of the Euler equations. This
is the base flow; superposed on this flow will be a compression wave whose fate we
wish to discover.

4.2. Shock formation

Again we explore the steepening of a compression wave with the wave front expansion
technique. A pressure wave of first-order discontinuity is launched into the collapsing
(or expanding) gas. The wave front travels along the characteristic that is defined by
Ḟ(t) = [ve(r, t)−ae(r, t)]r=F(t). As in previous sections a wave front variable ξ = x−F(t)
is defined and all the dependent variables are expanded on the wave front about the
exact solution:

v = ve(F(t), t) + ξv1(t) + 1
2
ξ2v2(t) + · · · ,

ρ = ρe(F(t), t) + ξρ1(t) + 1
2
ξ2ρ2(t) + · · · ,

p = pe(F(t), t) + ξp1(t) + 1
2
ξ2p2(t) + · · · .

These expansions are substituted into the governing equations to obtain the evolution
equation for the wave front. In this case p1 ≡ [∂p/∂r]r=F(t) turns out to be a better
variable to use in the wave front analysis. We skip the lengthy calculation and write
the resulting evolution equation in terms of p1(t):

p′1(t) +

[
9
4
(γ + 1)α(t)− ae(F(t), t)

F(t)
− 3

2

∂ae

∂r
(F(t), t)

]
p1(t)− γ + 1

2

1

ρeae
p1(t)

2 = 0. (4.7)

This equation is formally identical to that of the spherical quiescent case except for
the new term (9/4) (γ + 1)α(t) in the coefficient of p1. The physical origin of each
of the three terms in the coefficient of p1 is evident: (9/4) (γ + 1)α(t) is associated
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with the base flow contraction/expansion; −ae/F(t) is the geometric factor; and
−(3/2) ∂ae/∂r is the term associated with the sound speed gradient. The influence of
the first coefficient on shock formation depends on the sign of α: if α > 0 (expanding
base flow) the first term slows the steepening of the wave front; otherwise it speeds
shock formation. Care must be taken in interpretation of such statements, however,
because the sign and magnitude of α(t) also affect strongly the position of the wave
front, as we show below.

The three coefficients of p1(t) in (4.7) eventually tend to ∞ as time increases;
however, the geometric term always becomes singular faster than the other two,
because it does so when the wave front reaches the geometric centre. The other
two coefficients tend to ∞ when α(t) does. As we mentioned before, the wave front
always reaches the centre before α(t) goes to −∞. Hence the geometric term is always
dominant as the wave propagates into the centre. We therefore conclude that shock
formation is inevitable, due to the geometric factor.

As in the previous sections equation (4.7) has a formal solution as a Bernoulli
equation. This is difficult to analyse in general because the solution depends largely
on specific forms of the sound field. However, when γ = 5/3 a special structure
obtains with the consequence that strong conclusions can be built around this case.

4.2.1. Special structure in the case γ = 5/3

Equation (4.7) possesses a very interesting similarity structure only in the case
γ = 5/3. To see this we rewrite the system in terms of q(t) ≡ 1/p1(t):

q′(t) =

(
9
4
(γ + 1)α(t)− ae(F, t)

F
− 3

2

∂ae

∂r
(F, t)

)
q(t)− γ + 1

2

1

ρeae
, (4.8)

F ′(t) = ve(F, t)− ae(F, t). (4.9)

Now we scale q with (α0t+ 1)/pe and F with α0t+ 1, and name the scaled variables
q̃ and F̃; the system then becomes

q̃′(t) =

(
5− 3γ

4
α(t)− ae(F, t)

F
− 3

2

∂ae

∂r
(F, t)

)
q̃(t)− γ + 1

2γ

ae

α0t+ 1
, (4.10)

F̃ ′(t) = −ae(F, t)
α0t+ 1

. (4.11)

Clearly when γ = 5/3 the coefficient of α(t) in equation (4.10) disappears naturally. If
we recall the functional form (4.6) of ae and divide (4.10) by (4.11) we obtain

dq̃

dF̃
=

(
1

F̃
+

3

2

∂ ln a0(F̃)

∂F̃

)
+
γ + 1

2γ
. (4.12)

Equation (4.12) is invariant with respect to changes in α0, hence a parametric plot of
q̃(t) vs. F̃(t) is independent of the contraction/expansion rate.

In figure 10, we demonstrate this α0-invariance. In figure 10(a) the traces of three
steepening wave fronts are shown, with α0 = 0,−2 and −4 and all else equal. The
initial sound field and pressure field are taken to be a0(r) = 4 − 3r3 and p0 = 1,
respectively. Compression waves of the same magnitude are launched from position
r = 0.9. Note that with increasing contraction the curves move more quickly along
the horizontal axis. This is because contraction contributes directly to the speed of
the wave front (see (4.9)). In figure 10(b) under scaling the three curves collapse onto
a single curve. Because the scaling is trivial for α0 = 0 given p0 = 1, the quiescent
curve remains unchanged. All the other curves collapse onto it.
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Figure 10. Evolution of an inwardly travelling compression wave front in three cases in physical
variables (a), and in scaled variables (b). The wave fronts move from right to left. In (a), the solid
curve is for a quiescent base flow (α = 0), the dashed curve is for a mild collapse α = −2, and the
dot-dashed curve is for a stronger collapse α = −4. In (b) all three curves reduce to a single curve
in the scaled variables when γ = 5/3.

This result is very powerful because if we want to calculate the position and time
of shock formation for any initial contraction/expansion α0, we need only determine
the answer in the quiescent case. The non-quiescent case can be easily recovered from
the scaling. Suppose in a quiescent case a shock forms at position R0 and time t0, then
for some contraction ratio α0 = c1, the scaled spatial variable would yield the shock
formation position R̃1 = R̃0 = R0. Thus in order to calculate the un-scaled position
R1, we simply multiply R̃1 by c1t1 + 1. Here t1 is the time of shock formation for the
α0 = c1 case. Note we did not scale time, so t1 should be the time for F̃ to reach the
position R0 and different from t0, as we see from equation (4.11).

Next we calculate t1 assuming t0 is known. Integration of (4.11) with α0 = 0 and c1

respectively yields

t0 = −
∫ R0

Ri

1

a0(F̃)
dF̃ ,

1

c1(c1t1 + 1)
− 1

c1

=

∫ R0

Ri

1

a0(F̃)
dF̃ .

Here, Ri is the position of the wave front at t = 0. Elimination of the integral yields

t1 =
t0

1− c1t0
.

The expression for R1 thus follows:

R1 =
R0

1− c1t0
. (4.13)

This is a very useful formula: it represents clearly the influence that the contract-
ing/expanding base flow has on the shock formation process. If c1 → 0, R1 naturally
tends to R0; on the other hand for an infinitesimal shock, i.e. a shock formed close
enough to the origin for no fetch to develop, we simply make the contraction rate
α0 = c1 large and negative. For rapid shock formation, a wave should be launched
into an expanding bubble.

In figure 5 of Vuong et al. (1999), there is an excellent example of the latter. There,
a compression wave is launched from the wall of a collapsing bubble, reflects from the
centre, and again from the wall. A shock forms only in the third leg of the journey,
when the compression wave is travelling inward into an expanding gas. This is true
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Figure 11. A comparison of the various physical factors controlling shock formation. The right-hand
curves are for a homentropic, quiescent field. The upper curves are for a quiescent field with adverse
sound speed gradient. The middle curves show the evolution of the inwardly travelling compression
wave front in a collapsing gas with (the same) adverse sound speed gradient. The dashed curves
indicate the results of Claw.

despite the fact that the wave is weak and undergoes dissipation in its collision with
the wall.

Thus in the physical variables, contraction delays shock formation to a position
closer to the bubble centre. However, one should note that contraction rapidly
increases the uniform pressure of the base flow, thus one can expect stronger shocks
if there is shock formation. This is beyond the scope of the present work; we refer
the interested reader to Tyl & Wlodarczyk (1985).

In figure 11, we show the influence of various controlling factors in the evolution of
p1(t) via (4.7). The domain is 0 to 0.9 and the wave starts from the right-hand end. The
results are compared with numerical experiments with Claw to show good agreement.
As before 1/p1(t) is plotted against wave front position. The right-hand curves
correspond to the propagation of a compression wave into a quiescent homentropic
field, with p0 = 1 and a = 4. It shocks very early. The upper curves are for an
adverse sound gradient a(r) = 4 − 3r3. The middle curves superpose the contraction
α0 = −2 on the adverse sound field. As one can see the position of shock formation
shifts toward the origin. Of course either a favourable sound speed gradient or an
expanding base flow lead to an outward shift in the shock formation location.

4.2.2. The case γ 6= 5/3

This case is generally more difficult to analyse because the similarity structure no
longer obtains. We make only a few remarks about this case. In kinetic theory γ = 5/3
is an upper limit (for a monatomic gas), thus γ can only be smaller than 5/3. In a
contracting gas, the wave front evolution curve in scaled variables shifts to the right
as γ decreases, as shown in figure 12. If γ is not far away from 5/3, the dynamics
will not be very different, by continuous dependence on parameters. The physical
processes remain the same as γ varies, thus our conclusion about the influences of
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Figure 12. Influence of variation of γ on the evolution of an inward-travelling compression wave
front, in scaled variables. Solid: γ = 5/3; dashed: γ = 7/5; dot-dashed: γ = 1.1; dotted: γ = 1.
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Figure 13. Compression wave front evolution in two cases motivated by compressible Navier-Stokes
simulations of gas dynamics within a sonoluminescence bubble. In (a) there is the development of
a shock near r = 0.045 µm, whereas the stronger sound speed gradient in (b) delays the steepening
to an infinitesimal shock near the centre. The latter is annihilated by diffusion in the Navier–Stokes
equations as shown in figure 14. In this figure the dashed curves indicated the numerical integration
of the hyperbolic conservation laws, the solid curves correspond to the analytical solution of (4.7).

different factors remains valid. Further investigation (not shown) indicates that the
conclusions demonstrated in figure 11 are valid for γ < 5/3 as well.

4.2.3. Examples based on a sonoluminescence bubble

Finally, we consider typical data from sonoluminescence simulations conducted
by Storey & Szeri (2000) to examine cases of direct relevance to sonoluminescence.
Our tests are not exact duplications of the much more complicated simulations
conducted, but rather a rough verification of our theory. The present theory helps
one to understand when and why shocks form – or do not.

In the first case (figure 13a) the ambient radius of the sonoluminescence bubble
is R0 = 4.5 µm, with driving pressure PA = 1.2 atm, initial temperature T0 = 300 K,
driving frequency ω = 26.5 kHz, and gas composition (by moles) of 86% argon
and 14% water vapour. A strong compression wave of ∂p/∂r = 1500 M Pa µm−1

forms at the position 0.15µm in radius, and it propagates into a pressure field of
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Figure 14. Snapshots of the travelling pressure wave in example (b) of figure 13. The solid curve
is the calculation from the Euler equations and the dashed curve is the calculation from the full
Navier–Stokes equations. The two curves are nearly identical at earlier times when the wave front
is far from the centre. However, diffusion eliminates the shock that forms very close to the centre
in the ideal fluid calculation.

p0 = 160 M Pa. The contraction rate α0 is −4 × 109 s−1; the sound velocity is nearly
uniform at 1347 m s−1. The wave shocks at the position r = 0.045 µm.

In the second case (figure 13b) the ambient radius is R0 = 6.0 µm, with driving pres-
sure PA = 1.4 atm, initial temperature T0 = 293 K, driving frequency ω = 20.6 kHz,
and gas composition (by moles) of 68% argon and 32% water vapour. A compression
wave of amplitude ∂p/∂r = 400 M Pa µm−1 takes off at position 0.9 µm into a uniform
pressure field of p0 = 500 MPa, with a contraction rate α0 = −109 s−1 and sound speed
a0(r) = 1407 − 962(r/10−6)8 m s−1. Note we use an eighth-order polynomial curve fit
for the sound speed that is fairly flat but with a sharp gradient near the wall. Under
the influence of a strong adverse sound gradient and the contracting motion the
wave forms only an infinitesimal shock close to the origin. However, this infinitesimal
shock is again a theoretical artifact like the infinitesimal shocks of § 3.4.2, because it
would not be observed in a full Navier–Stokes calculation; see figure 14. A detailed
explanation is presented in what follows.

Both the cases show agreement with numerical experiments by Storey & Szeri. We
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conducted simulations in Claw as well to verify the theory. We remark that in Storey
& Szeri’s simulation the model is much more complicated, yet our analytical solution
captures the dominant processes that control the development of the wave fronts.

4.3. Comments on the validity of the Euler equations

We have shown in the spherical geometry that every inward-travelling compression
wave will become a shock before it reaches the origin; however, strong enough
compression waves will develop into shocks well before reaching the centre. Similarly,
every rarefaction wave becomes a shock when it reaches the origin in a homentropic
flow. Thus it is worthwhile considering the validity of the Euler equations as one
approaches the origin of coordinates.

The Euler equations differ from the Navier–Stokes equations by neglect of the
terms associated with viscosity and thermal conduction. The relevant dimensionless
parameters Re = UL/ν (Reynolds number) and RePr (product of Reynolds and
Prandtl numbers) should both be large when the diffusion terms are neglected in
favour of the convection terms. Here U is a representative velocity, L is a represen-
tative length scale for the flow, and ν = µ/ρ is the kinematic viscosity. The Prandtl
number is Pr = µcp/k, where k is the thermal conductivity and cp is the specific
heat.

For the Reynolds number to be large means that the ratio of inertial to viscous
effects is large. For the product of Reynolds and Prandtl numbers to be large means
that the heat carried by the flow far exceeds the heat conducted in the flow.

We argue that the relevant length scale on which the Reynolds number should
be based shrinks to zero in the case of a wave approaching the origin. Therefore
the Euler equations lose validity for the case of a wave approaching the origin and
the dissipation terms must be restored for an accurate solution. To examine this we
shall consider the full compressible Navier–Stokes equations including viscous effects
and thermal diffusion, but neglecting the small amount of heating due to viscous
dissipation:

ρ
Dv

Dt
= −∂p

∂r
+

4

3

∂µ

∂r

(
∂v

∂r
− v

r

)
+

4µ

3

(
∂2v

∂r2
+

2

r

∂v

∂r
− 2v

r2

)
,

ρcp
DT

Dt
− Dp

Dt
= k

(
∂2T

∂r2
+

2

r

∂T

∂r
+

1

k

∂k

∂r

∂T

∂r

)
,

where T is the temperature. It is clear that the coordinate singularity has influence
through the ‘source terms’ with r or r2 in the denominator. These are the terms
that eventually become indispensable and invalidate the ideal fluid approximation as
a wave approaches the centre. We are only concerned with these singular diffusion
terms owing to the fact that the remaining diffusive terms do not have to do with the
position of the wave.

Now we consider in some detail the influence of these singular diffusion terms, by
making an a posteriori examination using the ideal fluid calculation; that is to say,
we shall investigate the self-consistency of the ideal fluid approximation. In order to
estimate the importance of the singular viscous terms we simply take the ratio of the
singular viscous terms to the pressure gradient; similarly we form the ratio of the
singular thermal diffusion terms to the compression heating. In both cases, the ratio
is between singular diffusion terms of the Navier–Stokes equation and an associated
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term with similar effect from the Euler equation. The ratios are:

ε1 =

[
−4

3

dµ

dT

∂T

∂r

v

r
+

8

3
µ

(
1

r

∂v

∂r
− v

r2

)][
∂p

∂r

]−1

,

ε2 =

[
2k

r

∂T

∂r

] [
Dp

Dt

]−1

.

These parameters are generally very small when the wave is far away from the origin.
Next we evaluate ε1 and ε2 at the wave front, i.e. at r = F(t) using the wave front

expansion. This yields

ε1 =

[
4

3

dµ

dT
T1(t)

ve

F(t)
+

8

3
µ

(
v1(t)

F(t)
− ve

F(t)2

)]
[p1(t)]

−1,

ε2 =

[
2k

F(t)
T1(t)

] [
−γpe

(
v1(t) + 2

ve

F(t)

)]−1

.

Here T1(t) ≡ ∂T/∂r(r = F(t)), and the other notation follows that of § 4. We have
made use of

1

p

Dp

Dt
= γ

1

ρ

Dρ

Dt
= −γ

(
∂v

∂r
+

2v

r

)
,

which is the adiabatic assumption combined with the continuity equation. Note that
both the numerators and the denominators of ε1 and ε2 contain terms that tend to
infinity in the case of shock formation. However, remarkably, the ratios tend to finite
limits as the wave becomes a shock. To see this we need to make use of two relations
that can be derived from the wave front expansions in § 4.2:

a1(t) =
γ − 1

2
(α(t)− v1(t)) +

∂ae

∂r
(r = F(t), t),

p1(t) = −ρeae(v1(t)− α(t)).
We shall also use a2 = γRT to relate T1 to a1. Finally, for the dependence of viscosity
on temperature, we use simply µ = µ0T with µ0 constant (likewise for k), which is a
reasonable and simple approximation at high temperature. This allows one to obtain
the limits at the time of shock formation tB:

lim
t→tB

ε1 = −
[

8

3

µ

ρeae

(
γ − 1

2

α(t)

ae
+

1

F(t)

)]
r=F(tB ), t=tB

,

lim
t→tB

ε2 =

[
2(γ − 1)k

γ2R

ae

F(t)pe

]
r=F(tB ), t=tB

.

From the limiting forms, it is clear that that while other factors in the expression for
ε1 and ε2 remain finite, the factor F(t)−1 causes the ratios to blow up if the place of
shock formation is too close to the centre. This shows that the wave front position
is indeed the controlling factor in the importance of the singular diffusion terms.
We conclude that the earlier a shock forms (i.e. at larger r), the better is the ideal
fluid approximation inherent in the Euler equations. A shock that forms so close
to the centre that ε1 or ε2 grow large at the time of shock formation is not well
approximated as a purely hyperbolic phenomenon. In that case the diffusion terms
should be restored for a correct understanding of the development of the wave.

A final figure, 15, serves to illustrate these ideas. We performed the foregoing
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Figure 15. A plot of the ratio of singular thermal diffusion terms to compression heating versus wave
front position r. The curve (a) corresponds to figure 13(a), and shows that the ratio remains small
right up to shock formation if that occurs far enough from the origin. The curve (b) (corresponding
to figure 13b) illustrates the fact that the ratio tends to infinity as the location of shock formation
tends to the origin. This is an indication that the retention of the diffusive terms will have major
consequence, as shown in figure 14.

analysis on the two examples of figure 13. For the case of figure 13(a), where there is
the formation of an unambiguous shock at r = 0.045 µm, the parameter ε2 remains
small right up to the point of shock formation; one sees a shock even in a Navier–
Stokes simulation (not shown). For the case of figure 13(b), which evolves only to
an infinitesimal shock near the centre, ε2 increases dramatically near the origin, thus
indicating that the neglect of the singular thermal diffusion terms in solving the Euler
equations yields a solution inconsistent with the approximation. If these terms are
restored in a Navier–Stokes simulation, the shock never forms, as we have shown in
figure 14. We remark that both the theory and numerical calculations indicate that
thermal diffusion is always a much more prominent effect than the viscous terms in
the deviation from hyperbolic behaviour. For this reason only ε2 is shown in figure 15.

5. Conclusions
We have made use of a wave front expansion to explore the influence of entropy

gradients (or equivalently sound speed gradients) on the evolution of compression or
rarefaction waves in both Cartesian and spherical geometries. The initial compression
wave propagates in an otherwise quiescent field, or in a uniformly collapsing or
expanding gas. The wave is bounded by a first-order discontinuity that propagates
on characteristics.

The major results are summarized as follows. In the Cartesian geometry:
(a) When waves travel into a field with a higher sound speed ahead (larger entropy),

the velocity gradient of a compression wave front must exceed a critical value in order
to evolve into a shock (otherwise it relaxes). Rarefaction wave fronts always relax
when moving into higher sound speed areas of the flow.

(b) When waves travel into a field with lower sound speed ahead (lower entropy),
all compression wave fronts evolve into shocks. Rarefaction wave fronts tend toward
a permanent form of certain slope, in the case of a linearly decreasing sound speed
ahead of the wave.

(c) When the quiescent field is homentropic, the classical results obtain: compres-
sion wave fronts form shocks, rarefaction wave fronts relax.

In the spherical geometry with quiescent base flow:
(a) A shock forms for any inward-travelling compression wave front for any

distribution of sound speed (entropy), provided that the derivative of the sound
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speed vanishes at the origin as required by the singularity. However, a sound speed
field steeply decreasing outward (entropy decreasing outward) is able to delay shock
formation for weak inward-travelling compression waves. When the location of shock
formation is delayed close enough to the origin, diffusion would dominate its final
stages of evolution, hence such an infinitesimal shock would probably not be seen in
the presence of diffusion.

(b) Even inward-travelling rarefaction wave fronts are found to evolve into in-
finitesimal shocks in the homentropic case. Again, because this infinitesimal shock
forms right at the origin, it would probably not be seen due to the inevitable action
of diffusion. In other words, rarefaction wave fronts sharpen but not into shocks.

In a spherical geometry with a radially collapsing or expanding base flow:
(a) There is a fortuitous rescaling of variables that converts the problem into one

with a quiescent base flow when γ = 5/3.
(b) A collapsing base flow delays shock formation of an inward-travelling com-

pression wave front to closer to the centre.
(c) An expanding base flow accelerates shock formation of an inward-travelling

compression wave front.
The motivation of this research was the gas dynamics in the interior of sonolu-

minescence bubbles. In Vuong et al. (1999) it was conjectured that a steep negative
radial gradient in sound speed (entropy) could prevent the steepening of a compres-
sion wave into a shock. The evidence put forth was primarily circumstantial, based
on a Navier–Stokes calculation. Now we have performed an inviscid analysis that
clarifies the picture, as follows. Diffusive transport (of heat) sets up a temperature (or
entropy or sound speed) gradient in the bubble by the time a compression wave is
launched inward. It is by a strictly hyperbolic mechanism that this entropy gradient
affects the evolution of the compression wave into a shock.

The present work has shown that it is always possible to create a shock at finite
radius from a steep enough inwardly travelling compression wave front. This wave
front must be steep enough so that the shock forms far enough away from the bubble
centre in order not to be eliminated by diffusion. A strong enough wave front evolves
into a shock even in an adverse entropy gradient, even in a radially collapsing gas.

This research was supported by a grant from the National Science Foundation
Program in Theoretical Physics. The authors would like to thank Professor B. D.
Storey for numerous helpful discussions.

Appendix. Simple and semi-simple waves
For initial data (i.e. non-uniform pressure and/or non-zero velocity) with compact

support in an otherwise quiescent field, one can expect two waves to separate in time
in the homentropic case. By virtue of (2.3) one expects a third wave (along the third
set of characteristics C0) to separate in time from initial data with compact support
in a non-homentropic field.

A.1. Homentropic flow

A simple wave in the homentropic problem is a disturbance that propagates only
on one set of characteristics. From (2.8), one can easily show that the slopes of the
characteristics evolve according to

d+

dt
[u+ a] =

3− γ
2

a∂xΠ
−,

d−

dt
[u− a] = −3− γ

2
a∂xΠ

+.
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Hence if Π− is uniform in a homentropic problem at t = 0, it is always uniform (by
(2.8)). In this case there is no wave propagating on the C− characteristics, and the C+

characteristics are particularly simple, with constant slope determined by the initial
data. It is straightforward to determine initial data that will lead only to a right-
travelling wave: it must satisfy ∂xΠ

− = 0. Similar remarks apply to left-travelling
waves.

A.2. Non-homentropic flow

In the non-homentropic case we do not have such a convenient concept as a simple
wave. Nevertheless, it is possible to identify what characterizes (at least approxi-
mately) a flow with no left- or no right-travelling wave. These concepts are crucial
to understand the steepening of the leading edge of a compression wave propagating
into a non-uniform quiescent fluid.

The idea is the following. If the tendency of a signal bounded at time t between two
C+ characteristics (x+

1 (t) and x+
2 (t)) is to travel only along x+

1 (t) and x+
2 (t), then the

momentum between those two characteristics should be conserved. Mathematically,
we seek conditions sufficient to ensure the momentum does not change:

d

dt

∫ x+
2 (t)

x+
1 (t)

ρudx = 0.

One can show by constructing an integral balance of linear momentum for the region
{x : x+

1 (t) 6 x 6 x+
2 (t)}, that in general the momentum in question changes at the

rate

d

dt

∫ x+
2 (t)

x+
1 (t)

ρudx = − [p− ρua]x+
2 (t)

x+
1 (t)
≡ −S |x+

2 (t)

x+
1 (t)
.

The grouping S ≡ p − ρua we shall refer to as the flow force, after Benjamin
(Benjamin 1962, 1984; Benjamin & Lighthill 1954). This quantity is also called the
total momentum flux by Lighthill (1978). To paraphrase Lighthill, S is equal to
the rate of transport of momentum (here relative to the C+ characteristics) due
to: (i) the action of the pressure, and (ii) the convection by the (relative) velocity
(−a = u− (u+ a)).

Clearly, if between x+
1 (t) and x+

2 (t) ∆S = 0 at some time t, then the momentum
between the characteristics is not changing at that instant. For the momentum to be
conserved over some finite interval of time, ∆S must remain zero.

To begin, S is more conveniently written S = p [1− γM], where M ≡ u/a is the
Mach number. We take the derivative of S along the forward characteristics:

d+S

dt
= [1− γM]

d+p

dt
− γp

a

d+u

dt
+
γpu

a2

d+a

dt
.

We use the field equations and the definition of entropy to obtain

d+S

dt
=

(
2− γ + 1

2
M

)
d+p

dt
+

(γ − 1)

2

pu

R
∂xs. (A 1)

Hence, along C+, the flow force changes due to a change in the pressure p or an
entropy gradient. The latter term is unavoidable in a non-homentropic flow. However,
if d+p/dt is zero, or small, then the flow force along C+ is nearly constant except for
changes related to the non-uniformity of the domain into which it propagates. In this
case S is approximately invariant along two neighbouring C+ characteristics. If ∆S
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was zero at some initial time, then from physical principles we can expect the wave
will be confined between the two C+ characteristics.

In addition, if we evaluate (A 1) along the C+ characteristic that defines the leading
edge of a wave in an otherwise quiescent field, u and d+u/dt = −(ρa)−1d+p/dt are
zero. Hence S is absolutely invariant along this special characteristic.

By a similar argument, one can establish

d−S
dt

=

(
2 +

γ + 1

2
M

)
d−p
dt

+
(γ − 1)

2

pu

R
∂xs. (A 2)

Hence, if d−p/dt is zero, or small, then the flow force along C− is nearly constant except
for changes related to the non-uniformity of the domain into which it propagates. If
S is approximately invariant along two neighbouring C− characteristics, and if ∆S
was zero at some initial time, then from the balance of linear momentum we expect
such a wave to be confined between the two C− characteristics.

Now, by use of the field equations, one can easily show that

d+p

dt
= ρa

[
1

ρ
∂xp− a∂xu

]
,

d−p
dt

= ρa

[
−1

ρ
∂xp− a∂xu

]
. (A 3)

Hence, waves which are only right-travelling satisfy (by (A 1), (A 3))

a∂xu− ρ−1∂xp = 0. (A 4)

Waves which are only left-travelling satisfy (by (A 2), (A 3))

a∂xu+ ρ−1∂xp = 0. (A 5)

We refer to such waves as semi-simple waves.
As we mentioned before, a general compact initial condition will separate into

three waves. In the right-travelling wave, (A 4) will spontaneously be satisfied; in the
separated left-travelling wave, (A 5) will be spontaneously satisfied. This is true even
though neither (A 4) nor (A 5) holds true for the initial condition.

The connection between simple and semi-simple waves is established in the following
manner. In a homentropic flow, we have ∂xs = 0, which implies

2a

γ − 1
∂xa− 1

ρ
∂xp = 0.

This result changes (A 3) into

d+p

dt
= −ρa2∂xΠ

−,
d−p
dt

= −ρa2∂xΠ
+.

Hence, by (A 1), in a homentropic flow there is no change of S along C+ when the
Riemann invariant Π− is uniform. Likewise, by (A 2), in a homentropic flow there is
no change of S along C− when the Riemann invariant Π+ is uniform. This recovers
the result of §A.1 regarding simple waves. The idea of a semi-simple wave can be
extended to the spherical case, provided that 2av/r is small, which obtains when r is
large.
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